
R
p

S
N

a

A
R
R
2
A
A

P
2
4
4

K
I
I
R

1

m
i
t
e
h
a
i
i
t
m

d
b
o
i
R
m
t
p

1
d

International Journal of Mass Spectrometry 299 (2011) 71–77

Contents lists available at ScienceDirect

International Journal of Mass Spectrometry

journa l homepage: www.e lsev ier .com/ locate / i jms

F ion carpets: The electric field, the effective potential, operational
arameters and an analysis of stability

. Schwarz
ational Superconducting Cyclotron Laboratory, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321, United States

r t i c l e i n f o

rticle history:
eceived 13 July 2010
eceived in revised form
0 September 2010
ccepted 21 September 2010
vailable online 29 September 2010

ACS:

a b s t r a c t

Analytical solutions for the electric field of radiofrequency (RF) carpets are presented. The formulas have
been applied to calculate the effective repulsive potential with the Dehmelt model. The resulting formulas
have been used to investigate operational conditions such as the average distance of ions from the carpet
in the presence of an attractive static electric field.

The equations of motion of ions in the electric fields have been integrated using the developed formulas
to determine the parameter space for carpet operation. The operational parameters have been reduced
to three dimensionless parameters and a stability analysis is carried out in these terms.
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. Introduction

Inhomogeneous RF fields are widely used to transport and
anipulate ion beams. The most common structures to confine ions

n two or three dimensions, e.g., mass filters, ion guides and Paul
raps [1], employ quadrupole or higher-multipole RF fields. These
lectrode structures are commonly used to confine ions either in
igh vacuum or in the presence of a dilute light buffer gas such
s Helium, which dampens the ions’ motion [2–4]. The motion of
ons in these devices has been studied in great detail and the lim-
ting factors in their operation are well understood, largely owing
o their distinct geometry and their usually low and well defined

ultipolarity.
The effective force confining ions in these structures can be

erived from a so-called pseudo or effective potential developed
y Dehmelt [5]. It is well known (see Section 3) that the presence
f substantial damping can quickly reduce the effective force to an
mpractical level, where it cannot be recovered by increasing the

F field strength for practical reasons (e.g., discharges). One way to
ake up for this reduction is to scale down the size of the RF struc-

ures. As an example, for a quadrupole rod structure the effective
otential scales with the inverse of the inner radius squared.

E-mail address: schwarz@nscl.msu.edu.

387-3806/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijms.2010.09.021
In order to guide ions in a high-pressure gas environment RF
funnels and RF carpets have been developed. The term ‘ion funnel’
is usually reserved for cone-shaped ion guides made from ring-
shaped discrete electrodes [6,7], while RF carpets typically employ
stripe electrodes laid out on a printed circuit board [8]. In both
devices the electrodes are closely spaced (typical dimensions: sub-
mm) to produce locally a sufficiently strong RF electric field that
keeps ions away from the material. The electrodes are often biased
to generate a DC field that drives the ions in the desired direc-
tion towards (in the following called ‘push field’) and along the
RF structure.

Ion funnels have been applied in particular for analytical
chemistry. Their use and the use of RF carpets is growing in
importance for collection of energetic ions [9–11]. A number of
research facilities have implemented so-called gas-stoppers to
convert rare isotope beams produced by fast-beam fragmenta-
tion or other methods into low-energy beams [9,12–14]. At the
National Superconducting Cyclotron Laboratory (NSCL) a linear
gas stopper with static extraction fields has been used success-
fully since 2005 to provide low-energy beams for the LEBIT
high-precision mass spectrometer [15]. A new system is being

developed to improve ion throughput, efficiency and cleanliness
of these devices as more experiments will depend on their per-
formance and reliability. The NSCL will deploy both improved
linear gas stoppers and a novel device, called ‘cyclotron gas stop-
per’ [16]. The extraction of thermal ions from these devices will

dx.doi.org/10.1016/j.ijms.2010.09.021
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:schwarz@nscl.msu.edu
dx.doi.org/10.1016/j.ijms.2010.09.021
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in x-direction. In addition, the solution for a single stripe (with all
other stripes grounded) has also been developed. This solution may
2 S. Schwarz / International Journal

e aided by RF funnels, large-scale RF carpets or combinations of
oth.

The electric field at the surface of RF funnels and carpets is not
ominated by a single multipole and there is no well-developed
heory for determining when ion motion is stable. In order to
nderstand ion motion and consequently the operating range of
F carpets, a number of simulations have been reported and also
erformed at the NSCL. The electric field is usually obtained from
eld solvers such as Simion [17] and then used for the numerical

ntegration of the equation of motion. This procedure is generally
ime-consuming, because of the large number of electrodes and
he high RF frequency involved, in particular when the damping
s not implemented by the usual Stokes-law but the more realistic

onte-Carlo type collisions of ions with gas molecules. In order to
urvey more quickly the operating range (i.e., ion mass and charge,
ressure, RF frequency, RF amplitude, dependence on electrode
eometry etc.), an analytical expression for the electric field of an
F carpet was sought. The solution is laid out in Section 2 and in
ppendix A and then applied in Section 3 to calculate the effec-

ive potential. Fast ion trajectory calculations, based on the derived
ormulas have been used to predict the operating range in terms
f suitable dimensionless parameters. The results are reported in
ection 4.

. Potential and field equations

RF carpets use a cylindrical pattern of concentric stripe elec-
rodes to guide ions towards a center hole for extraction into high
acuum. As can be seen later, the motion of ions across the RF car-
et takes place at a small distance from the carpet, comparable to
he stripe width. For this reason the near-carpet electric field cal-
ulated for a parallel-stripe arrangement will be very similar to the
eld for cylindrical stripes. To facilitate an analytical calculation, the

ormulas described below have been derived for parallel stripes.
The top portion of Fig. 1 illustrates the geometry of carpet elec-

rodes in a top view. Conducting stripes with pitch a and separation
are laid out in the x–z-plane. The stripes are assumed to be

nfinitely long in z-direction and infinitely thin in y-direction. A
olution of the Laplace equation for y > 0 with the electric field
anishing for y → ∞ is required to describe the ion motion.

In the simplest and most common carpet operation, RF voltages

re applied such that two neighboring stripes are out of phase by
80◦. The field distribution for one of the two phases can be found
y solving the Laplace equation for the boundary conditions shown

n the bottom portion of Fig. 1: Some voltage V is applied to every
econd stripe interleaved with the other stripes carrying no voltage.

Fig. 1. Boundary conditions for
s Spectrometry 299 (2011) 71–77

The voltage between any two stripes is assumed to change linearly.
The solution for the other phase is then obtained by offsetting the
solution by one pitch a in x-direction and negating the applied volt-
age. By adding the results for the opposite phases one obtains the
full solution for this standard case of operation.

The problem can be generalized by allowing the same volt-
age V to be applied to every mth electrode with m − 1 grounded
electrodes in between. The standard case discussed before is then
simply obtained for m = 2. The solution for the electric field pro-
duced by this generalized boundary problem is developed in
Appendix A.2 leading to the two field components Ex,Ey in Eqs.
(A10) and (A15).

While these two somewhat lengthy equations cover the case
of m = 2, the solutions for this most common case of carpet design
can be simplified considerably due to its special symmetry. The
formalism for this case is laid out in Appendix A.3 and results in the
two field components:

Ex = V

�a�

[
arctan

(
Cx−(xr)
Shy(yr)

)
− arctan

(
Cx+(xr)
Shy(yr)

)]
(1)

and

Ey = V

2�a�
ln
[

Chy(yr) + Sx+(xr)
Chy(yr) − Sx+(xr)

· Chy(yr) − Sx−(xr)
Chy(yr) + Sx−(xr)

]
. (2)

The positions x, y and the gap g have been divided by the pitch a
to obtain the dimensionless quantities xr, yr and � , respectively. In
addition, three shortcuts have been used for the arguments of the
arctan and In function:

yr:=y/a, xr := x/a, � := g/a

Shy(yr) := sinh(�yr)

Chy(yr) := cosh(�yr)

Sx±(xr) := sin(�[xr ± �

2
])

Cx±(xr) := cos(�[xr ± �

2
]).

(3)

The formulas developed so far describe fields that are m-periodic
be used in cases where there is no periodicity and to construct arbi-
trary solutions including the periodic ones above. The electric field
can be obtained from the general m-periodic case for m → ∞. The
solution for this case is given in Appendix A.4 with the two field
components of Eqs. (A21) and (A23).

carpet problem (see text).
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ig. 2. Effective potential as a function of distance from the carpet surface for six p
anels are for different values of gas pressure above the carpet. Left: 2 mbar, Right:

. Effective potential

In this section the effective potential for the standard case of car-
et operation (m = 2) is evaluated. In this case, the carpet is driven
uch that amplitudes +V and −V alternate from one stripe to the
ext, generating twice the field strength calculated from Eqs (1) and
2). The time-averaged effective potential according to Dehmelt is
alculated as [5]:

eff = q

4mi˝2
�E2

0 = q

4mi˝2
(E2

x + E2
y ), (4)

or an ion with mass mi, driven by a harmonic electric voltage with
eld amplitude −→

E 0 and angular frequency ˝. The charge q of the
on equals Z·e, Z being the number of elementary electronic charges
. Since RF carpets usually operate in a gaseous environment with
ubstantial damping, Eq. (4) needs to be modified to

eff, damp = ˝2

˝2 + D2
Veff, (5)

where D is the damping constant according to −→
F damp = −miD ·

� , −→� being the velocity vector of the ion. The damping force con-
tant D (unit: 1/s) contains the reduced mobility K0, temperature T
nd pressure p as D = q/mi·1/K0·p/p0·T0/T, T0 and p0 being standard
emperature and pressure. Fig. 2 illustrates the resulting effective
otential for six positions between two RF electrodes for a pressure
f 2 mbar (left) and 200 mbar (right). An additional constant elec-
ric field of 2 V/mm, the push field Ep, is applied in the y-direction
hat gives rise to the potential wells shown. The minimum effective
otential is reduced by about two orders of magnitude in the high
ressure case and the minimum moves closer to the carpet surface.

.1. The location of the minimum in the effective potential

As was shown in Fig. 2, the net effective potential near the car-
et’s surface exhibits a minimum when an electric field Ep is present
hat pushes the ion towards the carpet. If the motion of the ion is
table the ion can hover above the carpet’s surface near the loca-
ion of this minimum without striking the carpet surface. While
he pseudo-potential cannot tell if an ion motion will be stable,
he location of the minimum can give some guidance: an operating
oint with a calculated minimum in the effective potential close to
he carpet will be unlikely to yield stable conditions.

Fig. 2 also shows that the effective potential is almost indepen-
ent of x, provided the distance y from the surface is large enough.
or y � a a suitable approximation can be found from the Dehmelt
otential at xr = 0, over the center of an electrode, where only Ey (Eq.

2)) contributes. For x = 0 and yr � 0, the doubled field component
y from Eq. (2) simplifies to

y(xr = 0, yr � 0) = 8V

�a�
sin(��/2) exp(−�yr). (6)
ns between two RF electrodes as indicated on the sketch on the far right. The two
bar.

After inserting the required factors the Dehmelt potential is cal-
culated as

D(y) = Epy + 1
˝2 + D2

q

4mi

(
8V

�a�

)2
sin2(��/2) exp(−2�y/a). (7)

From the condition that the derivative dD/dy vanishes one can
easily find the location of the minimum in the effective potential:

ymin = − a

2�
ln

(
Epa(˝2 + D2)

�

8 sin2(��/2)

mi

q

(
�a

2V

)2
)

. (8)

A comparison of the correct derivative with this approxima-
tion indicates that the approximation is good for approximately
y/a ≥ 0.5, for almost any value of 0 < � < 1.

3.2. The optimum gap-to-pitch ratio �

From the location of the minimum in the effective potential, Eq.
(8), one can calculate the gap-to-pitch ratio � that is most effective
in countering the pushing field Ep, i.e., that will keep the ions the
farthest away from the carpet for a given set of operation condi-
tions. Requiring the derivative of Eq. (8) with respect to � to vanish
leads to the simple condition ��/2 = tan(��/2). This condition is
trivially met at � = 0, i.e., for vanishing gap size. The minimum in
the effective potential only slowly varies with � . As an example,
if the operating parameters are chosen such that the minimum in
the effective potential is ymin = 2a for � = 0, then even changing �
to 1 will only lower ymin by about 7.2%. For this reason the require-
ment for (the unrealistic situation of) � = 0 is not a stringent one
and practical concerns should rather determine � .

4. Stability—Maximum pushing field

An important factor in the operation of RF carpets is the applied
electric field Ep that pushes the ions towards the carpet’s surface.
This electric field may be deliberately applied to move the ions
towards the carpet for transport along the surface or it may be a
consequence of space charge built up by a large number of ions
in a device with a carpet lining [18,19] (or both). As can be seen
from Eqs. (1) to (2), the electric field near the carpet surface is a
rather non-linear function that does not allow one to easily infer
the repelling power of the carpet from the ion’s equation of motion.

The typical carpet operating pressure often exceeds a few tens
of mbars. With this substantial damping the ion trajectories typi-
cally look like the one shown in Fig. 3, when Ep is large enough to
drive the ion onto the carpet and the ion will hit the surface in the
middle of one of the stripes. Thus the electric field component Ey at

x = 0 from Eq. (2) will determine if an ion hits the surface or not. The
simplified version of Eqs. (2) and (6), can be used to get an approx-
imate description of the repelling force of the carpet. While this
equation was derived for large yr, it is in fact a very good approxi-
mation even for small values of yr, if the gap-to-pitch parameter is
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Fig. 3. Typical ion trajectory in the presence of strong damping and if the ‘pushing
field’ Ep is large enough to move the ion close to the carpet. In this case the ion is
l

n
t

m

e
l
y

Ed and � and in each integration the parameter Epr was adjusted so

F
E

ikely to hit the carpet in the center of one of the electrodes.

ear 3/4. With this approximation for Ey, the equation of motion in
erms of time, t, can be written:

i
d2y

dt2
= q · 8V

�a�
sin(��/2) exp(−�y/a) · cos(˝t) − qEp − miD

dy

dt
.(9)

In order to understand the motion described by this differential
quation, it is advantageous to turn it into an equivalent dimension-
ess equation with minimum number of parameters. By defining

� = y�/a and � = ˝t Eq. (9) is easily transformed into:

d2y�

d�2
= Ed exp(−y�) cos(�) − Epr − �

dy�

d�
, (10)

ig. 5. Sample trajectories. The panels show the reduced coordinate yr as a function of tim
d and Epr, whereas the top two rows differ in the damping term �.
Fig. 4. RF carpet stability diagram for the dimensionless RF field component Ed and
push field Epr with the reduced damping parameter �.

with three remaining parameters

Ed = q

mi

1
˝2

8V

�a2
sin(�

�

2
), Epr = q

mi

1
˝2

�

a
Ep, and � = D/˝

(11)

Eq. (10) has been numerically integrated for a number of values
that the minimum value of y� was zero – this corresponds to the
situation that an ion would just touch the carpet – or the minimum
that would not let the ion motion become unstable. The results of
these calculations are shown in Fig. 4.

e, measured in multiples of the RF period �. Columns have the same field strengths
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ig. 6. Stability limits. Panel (a) shows both the limiting line for the reduced push
hat line. Panel (b) shows Epr as a function of the ratio of Ed to �. (See text).

Points with equal values of � are joined by lines. For certain com-
inations of Ed and � no stable solution with the required boundary
ondition was found. Instability was observed, if Ed was larger than
he values connected by the thick line, regardless of the damping
erm �. Curves with equal � increase sharply with Ed up to a max-
mum Epr and become independent of Ed. On the rising branch of
hese curves, the trajectories touch y = 0, whereas on the horizontal
ranch the minimum y increases with Ed. The line separating stable
rom unstable motion is given by the condition that the ion motion
ust touches the carpet (y = 0) and that � is small enough that the

otion becomes unstable at this point.
Fig. 5 illustrates some of the trajectories that contribute to the

stability’-diagram (Fig. 4). The figure shows the reduced coordi-
ate yr as a function of time, given in multiples of the RF-period for
ine combinations of Ed and Epr and �. All of the trajectories start
ut with the same initial condition yr = 1.5 and zero velocity. The
rst column (Ed = 1, Epr = 0.01) shows situations where the motion
elaxes to a stable solution, but the increase in the damping term �
auses the minimum to drop below the carpet surface (yr = 0). The
econd column (Ed = 1, Epr = 0.1) illustrates a set of pathological
arameters, where increasing the damping term � causes the
otion to go from unstable (� = 0.1) to a motion inside the carpet.

he last column (Ed = 10, Epr = 0.1) illustrates a set of useful param-
ters, where the three damping terms � cause stable motion with
ifferent distances from the carpet surface. As an example, the
d = 10, Epr = 0.01, � = 1 case reflects the situation for an m = 70 �
on on a carpet with U = 100 V, a = 0.2 mm, � = 0.5, ˝/2� = 10 MHz,
He = 100 mbar and a pushing field of 10 V/cm at room
emperature.

The calculated points defining the boundary of stability (or use-
ulness) from Fig. 4 are shown again in Fig. 6(a) together with a line
o guide the eye.

In the range shown here, the points roughly follow the expres-
ion Epr = exp(−2/

√
Ed). Fig. 6(a) also shows the calculated �

alues that were necessary to arrive at the stability line as explained
bove with a trend line to guide the eye. In order to consolidate the
onditions for the three parameters Epr, Ed and � the relation of Epr

ith Ed/� has been calculated and is shown in Fig. 6(b). These points
ollow the empirical relation

pr = 1 − 1.09/
√

Ed/�, (12)
hich is shown by the solid line. From the definition of D and the
educed parameters (see Eq. (11)) it can be seen that Ed/� does not
epend on the mass-over-charge ratio mi/q while Epr does. Thus, is
asy to turn Eq. (12) into a condition for a mass-cutoff or to calcu-
pr as a function of Ed (same as the thick line in Fig. 4) and the variation of � along

late the maximum pushing field Ep as a function of the operating
parameters.

5. Summary and outlook

Analytical solutions for the electric field of RF carpets have been
developed. The resulting formulas have been used to calculate the
effective potential near the carpet surface and to explore the useful
parameter space for carpet operation. The operation parameters
have been consolidated into three parameters related to the RF-
field, the push-field and damping, which determine the stability of
ion motion near the carpet surface.

Ion trajectory simulations are currently underway using the
developed field formula, but with the Stokes-law damping replaced
by realistic Monte-carlo type collisions of ions with gas molecules.
A lowering of the applicable push field compared to relation (12)
can be expected, if the ion moves very close to the carpet surface.
In such cases, a sudden change of the ion’s velocity vector due to
a collision with a buffer gas molecule may not be ‘averaged out’
fast enough in subsequent collisions with gas molecules to prevent
the ion from hitting the carpet. These effects will be studied and
calculated transport efficiencies will be compared to experimental
results from the NSCL RF carpet test stand [20].
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Appendix A. The electric field produced by the carpet

A.1. The potential

Because of the periodic nature of the problem and with the z-axis
placed in the middle of one voltage-carrying electrode the potential
can be expanded as a cosine series

�(x, y) =
∞∑

An exp
(

−2n�
yr

)
· cos

(
2n�

xr

)
. (A1)
n=0
m m

To shorten notation and simplify calculations the dimensionless
coordinates xr = x/a and yr = x/a have been introduced. For the same
reason the gap size g will be expressed as the gap-to-pitch ratio
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= g/a. Making use of the symmetry of the problem, the Fourier
oefficients An, n ≥ 1 are calculated as

n = 2
m

· 2 · V

∫ m/2

0

�(x, 0) cos
(

2n�

m
xr

)
dxr. (A2)

Inserting the boundary conditions as discussed above, this equa-
ion becomes

n = 4V

m

[∫ (1−�)/2

0

cos
(

2n�xr

m

)
dxr +

∫ (1+�)/2

(1−�)/2

cos
(

2n�xr

m

)

×
(

1
2

− xr − 1/2
�

)
dxr

]
. (A3)

The two arguments can easily be integrated and the Fourier
omponents simplify to

n = 2Vm

�2n2�
sin
(

n�

m

)
sin
(

n�

m
�
)

. (A4)

Inserting this result back in Eq. (A1) gives the expansion for the
oltage without the constant term from n = 0:

n>0 = 2Vm

�2�

∞∑
n=1

1
n2

exp
(

−2n�

m
yr

)
sin
(

n�

m

)
sin
(

n��

m

)

× cos
(

2n�xr

m

)
. (A5)

The term from n = 0, i.e., the average potential far above the
arpet’s surface (y → ∞), is readily calculated as

n=0 =
∫ m/2

0

�(xr, 0)dxr = V

m
. (A6)

For quick evaluation it would be nice to have the potential (i.e.,
he sum of (A5) and (A6)) in closed form. A somewhat similar prob-
em is treated in Jackson’s textbook on electrodynamics [21], where
e uses a relation between the arctan-function and a series expan-
ion
∑

n=oddZn/n of a complex function Z to convert his expanded
ormula into a closed solution. The main difference from our prob-
em to Jackson’s is the 1/n2 in the sum of Eq. (A5), which does not
llow a direct application of Jackson’s technique.

.2. General periodic solution

The required information for both the ions’ motion and the effec-
ive potential is the electric field, so it is more promising to find a
losed solution for −(( ∂ �(x, y)/∂ x), ( ∂ �(x, y)/∂ y)) rather than the
otential distribution �. Differentiation of Eq. (A5) for the variable
yields:

x(xr, yr) = 4V

�a�

∑
n>0

1
n

exp
(

−2n�

m
yr

)
sin
(

n�

m

)
sin
(

n��

m

)

× sin
(

2n�xr

m

)
. (A7)

ith the identity

sin(b) sin(c) sin(d)

= −1/4 �(ei(b+c+d) − ei(b+c−d) − ei(b−c+d) + ei(b−c−d)) (A8)
or some arbitrary arguments b,c,d one obtains

x(xr, yr) = − V

�a�
�
(∑

n>0

1
n

ei n�
m (1+�+2xr+2iyr ) − . . . − . . . + . . .

)
,

(A9)
s Spectrometry 299 (2011) 71–77

where the ellipses denote the remaining terms according to Eq.
(A8). Now one can use the series expansion −ln(1 − Z) =

∑
n>0Zn/n

for some complex quantity Z together with the identity
�ln(Z) = arg(Z) to arrive at the closed solution

Ex(xr, yr, m) = V

�a�
arctan

(
4SP(xr, yr, m)

CS(xr, yr, m) − 4CP(xr, yr, m)

)
.

(A10)

To shorten notation three definitions have been used:

SP(xr , yr , m) := sin
( �

m

)
sin
(��

m

)
sin

(
2�xr

m

)
sinh

(
2�yr

m

)
CS(xr , yr , m) := cos

(
2�

m

)
+ cos

(
2��

m

)
+ cos

(
4�xr

m

)
+ cosh

(
4�yr

m

)
CP(xr , yr , m) := cos

( �

m

)
cos
(��

m

)
cos

(
2�xr

m

)
cosh

(
2�yr

m

)
(A11)

In order to obtain the electric field perpendicular to the surface
of the carpet, Eq. (A5) is differentiated for the variable y:

Ey(xr, yr) = 4V

�a�

∑
n>0

1
n

exp
(

−2n�

m
yr

)
sin
(

n�

m

)
sin
(

n��

m

)

× cos
(

2n�xr

m

)
. (A12)

In this case one can use the identity

cos(b) sin(c) sin(d)

= −1
4

	(ei(b+c+d) − ei(b+c−d) − ei(b−c+d) + ei(b−c−d)) (A13)

to arrive at

Ey(xr, yr) = − V

�a�
	
(∑

n>0

1
n

ei n�
m (2xr+1+�+2iyr ) − . . . − . . . + . . .

)
,

(A14)

where the ellipses denote the remaining terms according
to Eq. (A13). Now one can use again the series expansion
−ln(1 − Z) =

∑
n>0Zn/n as before, but with the identity 	 ln(Z) =

1/2 ln
(∣∣Z∣∣2) to obtain the closed solution

Ey(xr, yr, m) = V

2�a�
ln

(
(CS2 − 4CP)2 + 16SP2

2

4CA2
− · CA2

+

)
. (A15)

Again a few functions of xr, yr and m have been introduced to
simplify notation:

CS2(xr , yr , m) := cos

(
4�xr

m

)
+ cos

(
2�

m

)
+ cos

(
2��

m

)
+ cosh

(
4�yr

m

)
SP2(xr , yr , m) := sin

(
2�xr

m

)
sin
( �

m

)
sin
(��

m

)
sinh

(
2�yr

m

)
CA±(xr , yr , m) := cos

( �

m
(2xr ± 1 ∓ �)

)
− cosh

(
2�yr

m

)
(A16)

A.3. Special case for m = 2
While Eqs. (A10) and (A15) cover the case of m = 2, the solutions
for this most common case of carpet operation can be simplified
further. Due to the special symmetry only the odd terms in Eqs.
(A9) and (A14) contribute in this case. For the field component in
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-direction Eq. (A9) reduces to

x(xr, yr) = − V

�a�
�
(∑

odd

1
n

ei n�
2 (1+�+2xr+2iyr ) − . . . − . . . + . . .

)
.

(A17)

This can be brought into closed form with the identity [21]( ∞∑
n=odd

Zn

n

)
= 1

2
arctan

(
2�(Z)

1 − |Z|2
)

(A18)

nd the result is the simple expression given in Eq. (1).
For the field component Ey Eq. (A14) reduces to

y(xr, yr) = − V

�a�
	
(∑

odd

1
n

ei n�
2 (1+�+2xr+2iyr ) − ... − ... + ...

)
.

(A19)

Here the relation( ∞∑
n=odd

Zn

n

)
= 1

4
ln

(
1 + 2	(Z) + |Z|2
1 − 2	(Z) + |Z|2

)
(A20)

an be used, which is obtained by combining 	 ln(Z) = 1
2 ln |Z|2

nd
∑

odd
Zn

n = 1
2 ln
(

1+Z
1−Z

)
. After consolidating the emerging four

ogarithms the result for Ey comes out, which is given in
q. (2).

.4. The single stripe

To complete the formalism the electric field produced by a single
tripe with all other electrodes grounded will be developed. The
lectric field in this case can be obtained from the general cases
iscussed above for m → ∞.

To obtain the electric field component in x-direction, one needs
o inspect the argument of the arctan-function in Eq. (A10). Because
f the product of the three sine and the hyperbolic sine func-
ions involving �/m in the nominator, the denominator has to
e expanded up to fourth order in �/m. In the limit of m → ∞
igher orders then cancel out. After consolidating the remain-

ng low-order terms one obtains for the electric field component
n x

x(xr, yr) = V

�a�
arctan

(
32�xryr

DEx(xr, yr)

)
, (A21)

here the denominator in the argument is now simply

Ex(xr, yr) = (1 − �2)
2 − 8(x2

r − y2
r )(1 + �2) + 16(x2

r + y2
r )

2
. (A22)

The electric field component in y-direction is obtained similarly
fter inspection of the argument of the In-function in Eq. (A15).
ere the product of the three sine and the hyperbolic sine functions

s squared and so one has to expand both nominator and denom-
nator to eighth order in �/m before higher orders drop out for
→ ∞. After accounting for all the lower-order terms the electric
eld component in y comes out as

y(xr, yr) = V

2�a�
ln
(

AY+(xr, yr)
AY−(xr, yr)

)
, (A23) [

[

s Spectrometry 299 (2011) 71–77 77

where the argument of the In-function has been written in terms
of the functions

AY±(xr, yr) = ((1 ± �)2 − 4x2
r )

2 + 8((1 ± �)2 + 4x2
r )y2

r + 16y4
r .

(A24)
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